
1

© 1999 Singh & Huhns 1

Agents and Electronic Commerce

Munindar P. Singh
singh@ncsu.edu

http://www.csc.ncsu.edu/faculty/mpsingh/

(Slides coauthored with Michael N. Huhns)

© 1999 Singh & Huhns 2

Outline

• Electronic commerce
• Agents
• Agents for electronic commerce
• Electronic commerce for agents
• Synthesis

2

© 1999 Singh & Huhns 3

Agents for EC

• Basic match
• Service location
• Service evaluation
• Negotiation
• Markets

© 1999 Singh & Huhns 4

EC for Agents

• Commerce as a metaphor for
– cooperative activity
– resource allocation

3

© 1999 Singh & Huhns 5

Kinds of Networks

• Internet
• Intranet: network restricted within an enterprise
• Extranet: private network restricted to selected

enterprises
• Virtual Private Network (VPN): a way to realize

an intranet or extranet over the Internet.

© 1999 Singh & Huhns 6

Open Environments:
Characteristics

• Cross enterprise boundaries
• Comprise autonomous resources that

– Involve loosely structured addition and removal
– Range from weak to subtle consistency requirements
– Involve updates only under local control
– Frequently involve nonstandard data

• Have intricate interdependencies

4

© 1999 Singh & Huhns 7

Open Environments:
Technical Challenges

• Coping with scale
• Respecting autonomy
• Accommodating heterogeneity
• Maintaining coordination
• Getting work done

– Acquiring, managing, advertising, finding, fusing, and
using information over uncontrollable environments

© 1999 Singh & Huhns 8

Electronic Commerce

• Introduction
• B2C
• B2B
• Projections
• Challenges
• Tasks from different perspectives

– Merchant
– Customer
– Dealmaker

5

© 1999 Singh & Huhns 9

EC Applications: 1
Interestingly, most applications of agents relate to electronic

commerce.
• Information gathering, presentation, and management

– University of Michigan auctions access to information for digital
libraries

• Personalization
– Firefly, AgentSoft, Verity, and Amulet offer agents that adapt to users'

information needs and proactively retrieve + organize targeted
information

– Siemens (Germany) provides personalized telecom services
– Amazon and Barnes & Noble help customers purchase books on-line

• Business processes and optimization
– Sainsbury’s Supermarkets (UK) simulates customers with agents
– Inventory management and logistics

© 1999 Singh & Huhns 10

EC Applications: 2
• Logistics

– US Postal Service includes smart-card agents on
packages to track deliveries

• Energy distribution and management
– Sydkraft (Sweden) controls electricity distribution

• Telecommunications
• Intelligence, in general

– France Telecom and Deutsche Telekom diagnose
circuit faults and route message traffic

– Smart vehicles and smart highways
– Raytheon/TI sensors cooperate in target detection

6

© 1999 Singh & Huhns 11

Properties of EC Environments

© 1999 Singh & Huhns 12

Autonomy
Independence of users.
• Political reasons

– Ownership of resources
– Control, especially of access privileges
– Payments

• Technical reasons
– Opacity of systems with respect to key features, e.g.,

precommit

7

© 1999 Singh & Huhns 13

Heterogeneity

Independence of component designers and system
architects.

• Political reasons
– Ownership of resources

• Technical reasons
– Conceptual problems in integration
– Fragility of integration
– Difficult to guarantee behavior of integrated systems

© 1999 Singh & Huhns 14

Locality
• Global information (data, schemas, constraints) causes

– Inconsistencies
– Anomalies
– Difficulties in maintenance

• Global information is essential for coherence
– Locations of services or agents
– Applicable business rules

• Relaxation of constraints works often
– Obtain other global knowledge only when needed
– Correct rather than prevent violations of constraints: often feasible
– When, where, and how of corrections must be specified, but it is

easier to make it local

8

© 1999 Singh & Huhns 15

Dynamism

• Entities change dynamically in their
– Composition
– Behavior
– Interactions

© 1999 Singh & Huhns 16

Simple B2C Example
Suppose you want to sell cameras over the web,

debit a credit card, and guarantee next-day
delivery

• Your application must
– record a sale in a sales database
– debit the credit card
– send an order to the shipping department
– receive an OK from the shipping department for next-

day delivery
– update an inventory database

9

© 1999 Singh & Huhns 17

B2C Challenges

• Problems
– What if the order is shipped, but the debit fails?
– What if the debit succeeds, but the order was never

entered or shipped?

© 1999 Singh & Huhns 18

Approach for Closed
Environment

• Transaction processing (TP) monitors (such as IBM’s
CICS, Transarc’s Encina, BEA System’s Tuxedo) can
ensure that all or none of the steps are completed, and that
systems eventually reach a consistent state

• But what if user’s modem is disconnected right after he
clicks on OK? Did order succeed? What if line went dead
before acknowledgement arrives? Will the user order
again?

• The TP monitor cannot get the user into a consistent state!

10

© 1999 Singh & Huhns 19

Approach for Open Environment
• Server application could send email about credit problems,

or detect duplicate transactions
• Downloaded Java applet could synchronize with server

after broken connection was reestablished, and recover
transaction; applet could communicate using http, or
directly with server objects via CORBA/IIOP or RMI

• If there are too many orders to process synchronously, they
could be put in a message queue, managed by a Message
Oriented Middleware server (which guarantees message
delivery or failure notification), and customers would be
notified by email when the transaction is complete

© 1999 Singh & Huhns 20

EC Challenge:
 Teamwork

To perform even simple trades reliably we must
ensure that the parties to an interaction agree on its
current state and where they desire to take it

• Requires elements of teamwork and collaboration
through
– persistence of the computations
– ability to manage context
– retrying

11

© 1999 Singh & Huhns 21

EC Challenge:
 Information System Interoperation

Supply Chains: manage the flow of materiel among a
set of manufacturers and integrators to produce
goods and configurations that can be supplied to
customers.

• Requires the flow of information and negotiation
about
– product specifications
– delivery requirements
– prices

© 1999 Singh & Huhns 22

EC Challenge:
 Distributed Decision-Making

Manufacturing Control: manage the operations of
factories

• Requires intelligent decisions to
– plan inflow and outflow
– schedule resources
– accommodate exceptions

12

© 1999 Singh & Huhns 23

EC Challenge:
 Autonomous Interests

Automated Markets to conduct trades under various
kinds of mechanisms.

• Requires abilities to
– set prices
– place bids
– accept or reject bids
– accommodate risks

© 1999 Singh & Huhns 24

EC Challenge:
 Personalization

Consumer dealings to make the shopping experience
a pleasant one for the customer.

• Requires
– learning and remembering the customer’s preferences
– offering guidance to the customer (best if unintrusive)
– acting on behalf of the user without violating their

autonomy

13

© 1999 Singh & Huhns 25

EC Challenge:
 Service Location and Assessment

Recommendations to help customers find relevant
and high quality services.

• Requires a means to
– obtain evaluations
– aggregate evaluations
– find evaluations

© 1999 Singh & Huhns 26

EC Challenge:
Exception Conditions

Virtual Enterprises to construct enterprises
dynamically to provide more appropriate,
packaged goods and services to common
customers.

• Requires the ability to
– construct teams
– enter into multiparty deals
– handle authorizations and commitments
– accommodate exceptions

14

© 1999 Singh & Huhns 27

Agents and MAS

• Background
• Principles
• Technologies

© 1999 Singh & Huhns 28

Tremendous Interest in Agent
Technology

Evidence:
• 400 people at Autonomous Agents 1998 in Minnesota
• 550 people at Agents World 1998 in Paris

Why?
• Vast information resources now accessible
• Electronic commerce
• Ubiquitous processors
• New interface technology

15

© 1999 Singh & Huhns 29

What is an Agent?

• The term agent in computing covers a wide range of
behavior and functionality.

• In general, an agent is an active computational entity
– with a persistent identity
– that can perceive, reason about, and initiate activities in

its environment
– that can communicate (with other agents)

• It is the last feature that makes agents a worthwhile
metaphor in computing

© 1999 Singh & Huhns 30

Attributes of MAS

• Decentralization
• Complex components, often best described at the

knowledge level
• Adaptive behavior
• Complex interactions
• Coordination

16

© 1999 Singh & Huhns 31

Economics

Heritage of MAS

Cognitive
Science

Linguistics

Databases

Sociology

Psychology

Systems
Theory

Distributed
Computing

Cooperative
Information

Systems

Most work

© 1999 Singh & Huhns 32

Characteristics of MAS Applications
• Inappropriate for conventional distributed

computing:
– local data may be incomplete or inaccurate
– local problem solving is prone to error
– the nodes are complex enough to be agents

• Inappropriate for conventional AI:
– local autonomy is critical
– strong semantic constraints exist among agents

17

© 1999 Singh & Huhns 33

Benefits of MAS: 1
• Due to Distributed Computing

– Modularity: many problems are inherently
decentralized; large problems are easier if they are
decomposed and distributed

– Speed
– Reliability

© 1999 Singh & Huhns 34

Benefits of MAS: 2
• Due to AI

– Maintaining systems becomes harder as they scale up
• mix and match parts: easy, if they were designed to cooperate
• extend capabilities: easier if you can just add more players to a

team

– Knowledge acquisition: use many narrow experts
– Reusability
– Ease of requirements acquisition
– Platform independence

18

© 1999 Singh & Huhns 35

Dimensions of MAS: Agent

Dynamism is the ability of an agent to learn:

Autonomy:

Interactions:

Sociability (awareness):

Fixed Teachable Autodidactic

Controlled Independent

Simple Complex

Interdependent

Autistic CollaborativeCommitting

© 1999 Singh & Huhns 36

Dimensions of MAS: System
Scale is the number of agents:

Interactions:

Coordination (self interest):

Agent Heterogeneity:

Communication Paradigm:

Individual Committee Society

Reactive Planned

Antagonistic AltruisticCollaborative

Competitive Cooperative Benevolent

Identical Unique

Point-to-Point Multi-by-name/role Broadcast

19

© 1999 Singh & Huhns 37

Basic Problems of MAS

• Description, decomposition, and distribution of
tasks among agents

• Interaction and communication among agents
• Distribution of control among agents
• Representation of goals, problem-solving states,

and other agents
• Rationality, consistency maintenance, and

reconciliation of conflicts among agents

© 1999 Singh & Huhns 38

Pure Agent Approaches

20

© 1999 Singh & Huhns 39

Materiel Management

Distributed, autonomous agents enable
• Robust inventory control
• Decentralized logistics
based on a “Commuter” approach

© 1999 Singh & Huhns 40

The Logistics Problem
Efficiently and rapidly moving large quantities of equipment,

personnel, and supplies is a massive problem in planning
and scheduling

Current solutions to this problem are centralized and top-
down, based on hierarchical decomposition

• Such solutions are
– extremely complex
– unable to deal with unforeseen delays and breakdowns
– unable to take advantage of synergism among tasks
– susceptible to single-point failures
– difficult to change once started!

21

© 1999 Singh & Huhns 41

The USC Approach:
a “commuter” paradigm

Imagine that each item of materiel is an intelligent agent
whose sole objective is to reach its assigned destination.
Just like a person commuting to work, this agent would
dynamically

• decide its means of conveyance
• contend for storage and transportation resources
• avoid or resolve conflicts with other agents
• make local decisions as it wends its way through a

distribution network

© 1999 Singh & Huhns 42

Agent-Based Decentralized
Logistics

22

© 1999 Singh & Huhns 43

Hardware/Software Architecture

• Each item of materiel would have a "smart card"
containing
– a mechanism for communicating locally and globally
– a reasoning engine
– a knowledge base with information about routes, conveyances, and

ways to resolve conflicts
– its objective, priority, needs, and relationships to other items

• Each part of the distribution network would have a scanner
to interrogate and command the items

© 1999 Singh & Huhns 44

Technical Challenges

• Setting-up a deployment
– centralized planning is still required to assign objectives, priorities,

and responsibilities to the items

• Controlling a deployment: maximize responsiveness and
minimize resource usage
– a market approach would allow items to compete fairly and

intelligently, while cooperating altruistically when appropriate
– items would continually and optimally replan during execution

• Monitoring a deployment
– intelligent items would be able to state when they might reach their

destinations, not just where they are at the moment

23

© 1999 Singh & Huhns 45

Consistency Maintenance
Applied to Consultation and

Collaboration

© 1999 Singh & Huhns 46

What Is a TMS?
A truth maintenance system
• performs some form of propositional deduction
• maintains justifications and explains the results of its

deductions
• updates beliefs incrementally when data are added or

removed
• uses its justifications to perform dependency-directed

backtracking
TMSs are important because they
• deal with atomicity
• deal with the frame problem
• lead to efficient search

24

© 1999 Singh & Huhns 47

Architecture of TMS-Based Agent

• The problem solver represents domain knowledge in the
form of rules, procedures, etc. and chooses what to focus
on next

• The TMS keeps track of the current state of the search for
a solution. It uses constraint satisfaction to maintain
consistency in the inferences made by the problem solver

Problem
Solver

TMS

justifications

beliefs

© 1999 Singh & Huhns 48

Knowledge Base Integrity

• Stability: believe everything justified validly;
disbelieve everything justified invalidly

• Well-Foundedness: beliefs are not circular
• Logical consistency: logical contradictions do not

exist
• Completeness: a system will find a consistent state

if it exists, or report failure
Problems arise when knowledge is distributed

25

© 1999 Singh & Huhns 49

Kinds of Inconsistency
• Both a fact and its negation are believed
• A fact is both believed and disbelieved
• An object is believed to be of two incompatible types, i.e.,

two terms are used for the same object
• Two different objects are believed to be of the same type,

i.e., the same term is used for two different objects
• A single-valued fact is given more than one different

value; e.g., (age Bob 7) and(age Bob 8)
Separate TMSs could be used for
• domain knowledge, control knowledge, know-what, and

know-how

© 1999 Singh & Huhns 50

Degrees of Logical Consistency

• Inconsistency: one or more agents are inconsistent
• Local Consistency: agents are locally consistent
• Local-and-Shared Consistency: agents are locally

consistent and all agents agree about shared data
• Global Consistency: agents are globally consistent
The RAD DTMS maintains local-and-shared

consistency and well foundedness

26

© 1999 Singh & Huhns 51

Distributed TMS

• Each agent has a justification-based TMS
• Each datum can have status OUT, INTERNAL (valid local

justification), or EXTERNAL. A shared datum must be
INTERNAL to one of the agents that shares it

• When a problem solver adds or removes a justification, the
DTMS

• Unlabels data based on the changed justification
• Labels all unlabeled shared data
• Chooses labels for remaining unlabeled data; if this fails, it

backtracks by unlabeling additional data and iterating

© 1999 Singh & Huhns 52

DTMS Example
Client

f3: afford(Xcorp) INTERNAL
r3: Infer buy(?X) from query(Broker recommend(?X)) and

 afford(?X) INTERNAL

Broker
f1: afford(Xcorp) OUT
f2: cash-rich(Xcorp) INTERNAL
r1: Infer recommend(?X) from takeover-bid(?X) INTERNAL
r1: Infer takeover-bid(?X) from cash-rich(?X) INTERNAL

? recommend(?X)

27

© 1999 Singh & Huhns 53

DTMS Example (cont.)
Client

f3: afford(Xcorp) INTERNAL
r3: Infer buy(?X) from query(Broker recommend(?X)) and

 afford(?X) INTERNAL

Broker
f1: afford(Xcorp) OUT
f2: cash-rich(Xcorp) INTERNAL
r1: Infer recommend(?X) from takeover-bid(?X) INTERNAL
r1: Infer takeover-bid(?X) from cash-rich(?X) INTERNAL
f3: recommend(Xcorp) INTERNAL

Shared with: Client; Justification: (f2 r1 r2)

recommend(XCorp)

© 1999 Singh & Huhns 54

DTMS Example (cont.)
Client

f3: afford(Xcorp) INTERNAL
r3: Infer buy(?X) from query(Broker recommend(?X)) and

 afford(?X) INTERNAL
f4: recommend(Xcorp) EXTERNAL

Shared with: Broker; Justification: ()
f5: buy(Xcorp) INTERNAL

Justification: (f3 f4 r3)

Broker
f1: afford(Xcorp) OUT
f2: cash-rich(Xcorp) INTERNAL
r1: Infer recommend(?X) from takeover-bid(?X) INTERNAL
r1: Infer takeover-bid(?X) from cash-rich(?X) INTERNAL
f3: recommend(Xcorp) INTERNAL

Shared with: Client; Justification: (f2 r1 r2)

28

© 1999 Singh & Huhns 55

DTMS Example (cont.)
Client

f3: afford(Xcorp) INTERNAL
r3: Infer buy(?X) from query(Broker recommend(?X)) and

 afford(?X) INTERNAL
f4: recommend(Xcorp) EXTERNAL

Shared with: Broker; Justification: ()
f5: buy(Xcorp) INTERNAL

Justification: (f3 f4 r3)

Broker
f1: afford(Xcorp) OUT
f2: cash-rich(Xcorp) INTERNAL --> OUT
r1: Infer recommend(?X) from takeover-bid(?X) INTERNAL
r1: Infer takeover-bid(?X) from cash-rich(?X) INTERNAL
f3: recommend(Xcorp) INTERNAL --> OUT

Shared with: Client; Justification: (f2 r1 r2)

relabel recommend(XCorp)

© 1999 Singh & Huhns 56

DTMS Example (cont.)
Client

f3: afford(Xcorp) INTERNAL
r3: Infer buy(?X) from query(Broker recommend(?X)) and

 afford(?X) INTERNAL
f4: recommend(Xcorp) OUT

Shared with: Broker; Justification: ()
f5: buy(Xcorp) OUT

Justification: (f3 f4 r3)

Broker
f1: afford(Xcorp) OUT
f2: cash-rich(Xcorp) OUT
r1: Infer recommend(?X) from takeover-bid(?X) INTERNAL
r1: Infer takeover-bid(?X) from cash-rich(?X) INTERNAL
f3: recommend(Xcorp) OUT

Shared with: Client; Justification: (f2 r1 r2)

29

© 1999 Singh & Huhns 57

Distributed ATMS

• Agents are locally, but not globally, consistent, based on a
local ATMS

• Agent interactions are limited to result sharing
• Agents communicate only their own results
• Agents believe only results they can substantiate locally
• Agents communicate inconsistent assumption sets, termed

“NOGOODS,” which receiving agents use to disbelieve
any results that have been obtained from the sending agent
and that are justified by one of these sets

• [Mason and Johnson]

© 1999 Singh & Huhns 58

Cooperative Information Systems

30

© 1999 Singh & Huhns 59

Principles of Agent Systems

We must understand the principles to engineer
agent-based systems

• System architecture
• Databases and information systems
• Interoperation
• Protocols and compliance
• Underlying frameworks and

implementations

© 1999 Singh & Huhns 60

Information System Architectures:
Centralized

Mainframe

Terminal3270

Terminal

Terminal

Terminal

Terminal

TerminalTerminal

Terminal

Terminal

Terminal

Terminal

31

© 1999 Singh & Huhns 61

Information System Architectures:
Client-Server

E-Mail
Server Web

Server
Database

Server

PC
Client

PC
Client PC

Client

Workstation
Client

Master-Slave

© 1999 Singh & Huhns 62

Information System Architectures:
Distributed

E-Mail
System

Web
System

Database
System

Application

ApplicationApplication

Application

Peer-to-Peer

32

© 1999 Singh & Huhns 63

Information System Architectures:
Cooperative

E-Mail
System

Web
System

Database
System

Application

ApplicationApplication

Application

(Mediators, Proxies, Aides, Wrappers)

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

© 1999 Singh & Huhns 64

Cooperative Information Systems

MAS applied to decentralized information
system components

• The study of how agents (as components)
should coordinate their activities to achieve
their goals:
– cooperate when pursuing common or overlapping

goals
– compete intelligently when pursuing conflicting

goals

33

© 1999 Singh & Huhns 65

When is CIS Applicable?

CIS is appropriate whenever the following hold:
• information is distributed, as in interacting businesses
• metadata is heterogeneous, as in schema integration
• data sources are distributed, as in energy management
• rewards are distributed, as in automated markets
• diverse interests must be represented, as in negotiation
• decisions are distributed, as in manufacturing control

© 1999 Singh & Huhns 66

Interoperation in Traditional and
Virtual Enterprises

34

© 1999 Singh & Huhns 67

Cooperation in Information Systems

• Connectivity: ability to exchange messages
• Interoperability: ability to exchange

messages to request and receive services,
i.e., use each other’s functionality

• Cooperation: ability to perform tasks jointly

© 1999 Singh & Huhns 68

Levels of Interoperation

Require surmounting a series of challenges
• Transport: IP
• Messaging: JDBC
• Data and structure: XML
• Process
• Policy
• Semantics: ontologies
• Dynamism: agents

35

© 1999 Singh & Huhns 69

Database Integration

© 1999 Singh & Huhns 70

Dimensions of Integration

• Existence of global schema
• Location transparency: same view of data

and behavior at all sites
• Uniform access and update language
• Uniform interaction protocols
• Opacity of replication
• Strict semantic guarantees of overall system

36

© 1999 Singh & Huhns 71

Full Integration

Distributed databases are the most tightly integrated
• They provide

– A global schema and a unique way to access data
through that schema

– Location transparency
– Replication managed automatically
– ACID transactions (explained below)

© 1999 Singh & Huhns 72

Federation

Less than full integration
• Local schemas and a global schema coexist:

access may be through either
• ACID transactions are optional, but possible

if the local transaction managers are
open— problems of hidden conflicts must be
solved

• Location transparency

37

© 1999 Singh & Huhns 73

Multidatabases

Multidatabases are a loose form of federation
• No global schema
• A uniform language to access the DB
• The locations of the data are visible to the

application
• There may be some support for semantic

constraints, depending on the underlying
systems

© 1999 Singh & Huhns 74

Database Interoperation

Interoperation is the loosest form of
integration, in that there is no real
integration of the databases

• There might be no global schema, so
heterogeneous ways to access the DB must coexist

• Location transparency is not easy to achieve
• Different query languages might be required at

different databases (SQL, OQL)
• Applications must handle all semantic constraints

38

© 1999 Singh & Huhns 75

Legacy Systems

A pejorative term for computing systems that
• run on obsolete hardware and nonstandard

communication networks
• run poorly documented, unmaintainable software

created by ad hoc patches to handle bugs, and
changing regulations and business needs

• consist of poorly modeled databases, often on
hierarchical or network DBMSs

• support rigid user interfaces

© 1999 Singh & Huhns 76

Legacy Systems: Positive

• Fulfill crucial business functions
• Work, albeit suboptimally; Run

– airline reservation systems
– banks
– business data processing

• Represent huge investments in time and money

39

© 1999 Singh & Huhns 77

Legacy Systems: Challenge

How to interoperate modern applications
with legacy systems
– share data
– preserve integrity

© 1999 Singh & Huhns 78

Dimensions of Abstraction/1
Information resources are associated with

abstractions over different dimensions. These may
be thought of as constraints that must be
discovered and represented.

• Data
– domain specifications
– value ranges, e.g., Price >+= 0
– allow/disallow null values

40

© 1999 Singh & Huhns 79

Dimensions of Abstraction/2
• Structure

– schemas and views, e.g., securities are stocks
– specializations and generalizations of domain concepts,

e.g., stocks are a kind of liquid asset
– value maps, e.g., S&P A+ rating corresponds to

Moody’s A rating
– semantic data properties, sufficient to characterize the

value maps, e.g., prices on the Madrid Exchange are
daily averages rather than closing prices

– cardinality constraints
– integrity constraints, e.g., each stock must have a

unique SEC identifier

© 1999 Singh & Huhns 80

Dimensions of Abstraction/3
• Process

– procedures, i.e., how to process information, e.g., how
to decide what stock to recommend

– preferences for accesses and updates in case of data
replication (based on recency or accuracy of data)

– preferences to capture view update semantics
– contingency strategies, e.g., whether to ignore, redo, or

compensate
– contingency procedures, i.e., how to compensate

transactions
– flow, e.g., where to forward requests or results
– temporal constraints, e.g., report tax data every quarter

41

© 1999 Singh & Huhns 81

Dimensions of Abstraction/4

• Policy
– security, i.e., who has rights to access or update what

information? (e.g., customers can access all of their
accounts, except blind trusts)

– authentication, i.e., a sufficient test to establish identity
(e.g., passwords, retinal scans, or smart cards)

– bookkeeping (e.g., logging all accesses)

© 1999 Singh & Huhns 82

XML-Based Information System

42

© 1999 Singh & Huhns 83

Enterprise Modeling
Model static and dynamic aspects of enterprises
• Models document business functions

– databases
– applications
– knowledge bases
– workflows, and the information they create, maintain, and use
– the organization itself

• Models enable
– reusability
– integrity validation
– consistency analysis
– change impact analysis
– automatic database and application generation

© 1999 Singh & Huhns 84

Building a System

Cognition

Universe of
Discourse 1

Conceptual
Schema

CASE
Tool

Interface

Application

Database

use generate
construct

observe

43

© 1999 Singh & Huhns 85

Building Cooperating Systems

Cognition

Universe of
Discourse 1

Conceptual
Schema

CASE
Tool

Interface

Application

Database

apply generate

Cognition Conceptual
Schema

CASE
Tool

Interface

Application

Database

apply generate

Universe of
Discourse 2

Knowledge
about
information
content and
processes

construct

construct

observe

observe

collaboration
commitment
coordination

© 1999 Singh & Huhns 86

Process Abstractions

Task coordination covers the process dimensions of
abstraction.

• Tasks execute on multiple client, server, and
middleware systems

• Coordinate them
– for distributed queries and transactions, and general

workflow
– by constraining control and data among them

44

© 1999 Singh & Huhns 87

Policy Abstractions

How may security, authentication, and
bookkeeping policies be enforced?

• Alternatives:
– Each resource applies them locally
– Service level agreements capture the policies

© 1999 Singh & Huhns 88

Semantic Interoperability

• The goal for application development is to
develop new applications that
– extend over multiple new and legacy systems
– respect the semantics of the various resources

• The approach is to
– infer process business rules and integrity constraints
– generate structure and process bindings in order to

develop the given application

45

© 1999 Singh & Huhns 89

Information System Architectures:
Organizational

Hospital
CIS

Doctor’s
CIS

Insurance
CIS

Clinic/HMO
CIS

Lab data
Claims

Accounting

© 1999 Singh & Huhns 90

Standard MAS Architecture

46

© 1999 Singh & Huhns 91

Agent Environments
• Communication Infrastructure

– Shared memory (blackboard)
– Connected or Connectionless (email)
– Point-to-Point, Multicast, or Broadcast
– Directory Service

• Communication Protocol
– KQML
– HTTP and HTML
– OLE, CORBA, DCOM, etc.

• Interaction Protocol
• Mediation Services
• Security Services (timestamps/authentication/currency)
• Remittance Services
• Operations Support

(archiving/billing/redundancy/restoration/accounting)

© 1999 Singh & Huhns 92

(de facto) Standard Agent Types

Ontology Agent

Application
Program

Mediator
Agent

Broker
Agent

Database Resource Agent Database Resource Agent

Query or
Update
In SQL

Reply

Reg/Unreg (KQML)

Reg/Unreg
(KQML)

Reg/Unreg
(KQML)

Mediated
Query (SQL)

Reply

Schemas
(CLIPS)

Reply

Mediated
Query (SQL)

Ontology
(CLIPS)

User Interface
Agent

ReplyReg/Unreg
(KQML)

47

© 1999 Singh & Huhns 93

Intranet Agent Architecture
• Intranet services enable the

federation of distributed
heterogeneous agents to
interoperate and collaborate

• Agents register their names and
capabilities using
– naming service
– directory service

• Agents use a brokerage service
to find other agents that can deal
with a specified request

• Agent activity within the net is
recorded by a logging service

• Agent status and interactions are
shown by a visualization service

• Interactions via an ACL

Agent Y

Agent Z

Agent X

Jini Discovery, Join,
Lookup, Events

Naming Directory Logging

Translation Brokerage Visualization

Naming Directory Logging

Translation Brokerage Visualization

Naming Directory Logging

Translation Brokerage Visualization

© 1999 Singh & Huhns 94

Access to Services
Agent A

using KQML
or ICL

Agent B
using FIPA

ACL

Agent C
using KQML

or ICL

Grid
Adapter Library

Translation

Message
Handling

Grid
Proxy

Translation

Message
Handling

Interprocess
Communication

Interprocess
Communication

Interprocess
Communication

Interprocess
Communication

FIPA Agent Management
and ACL Specifications Other CoABS ComponentsRETSINA

MatchMaker

Naming Directory Logging

Translation Brokerage Visualization

48

© 1999 Singh & Huhns 95

Network Services
• 1 instance of the Naming Service per LAN
• 1..n instances of Directory and Brokerage Service per LAN

Naming Directory Logging

Translation Brokerage Visualization

© 1999 Singh & Huhns 96

Naming Service

• Architecture requires scalable, symbolic
name resolution

• Alternative naming protocols
– FIPA
– LDAP
– Jini
– CORBA Naming Service
– JNDI

49

© 1999 Singh & Huhns 97

Directory Service
• Simple yellow pages service
• Registered agents advertise their services by providing their name,

address, and service description
• Agents request recommendations for available services (provided

by other registered agents or services)
• A simple database-like mechanism that allows agents to

– insert descriptions of the services they offer
– query for services offered by other agents.

• 1..n Directory Service Agents on a LAN
• Brokerage, recruitment and mediation services are not provided

by Directory Service

© 1999 Singh & Huhns 98

Brokerage Service

• Cooperates with the Directory Service
• An agent requests the Brokerage Service to recruit one or

more agents who can answer a query
• Brokerage Service uses knowledge about the requirements

and capabilities of registered agents to
– determine the appropriate agents to which to forward a query
– send the query to those agents
– relay their answers back to the original requestor
– learn about the properties of the responses it passes on

• example: Brokerage agent determines that advertised results from
agent X are incomplete and seeks out a substitute for agent X

50

© 1999 Singh & Huhns 99

Agents for Messaging and
Structure Interoperation

• Mediators [Wiederhold]
• Aides [Carnot DCA]
• Database and Protocol Agents [Carnot ESS]
• Heads [Steiner]
• Brokers [OMNI]
• Knowledge handlers [COSMO]
• Intelligent information agents [Papazoglou]
• Facilitators [ARPA Knowledge Sharing Effort]

© 1999 Singh & Huhns 100

Mediators

Modules that exploit encoded knowledge about data to create
information for higher-level applications. Mediators, thus,

• provide logical views of the underlying information
• reside in an active layer between applications and resources
• are small, simple, and maintainable independently of others
• are declaratively specified, where possible, and inspectable by users
• come in a wide range of capabilities, from database and protocol

converters, to intelligent modules that capture the semantics of the
domain and learn from the data

51

© 1999 Singh & Huhns 101

Mediator Architecture
Application Programs

Information Resources

User Interfaces

Networks
Network Interfaces
and Mediators

© 1999 Singh & Huhns 102

Mediator Interfaces

• Mediators should be separate from databases
– mediators contain knowledge beyond the scope of a database
– mediators contain abstractions that are not part of a database
– mediators must deal with uncertainty
– mediators access multiple databases to combine disjoint data

• Mediators should be separate from applications
– their functions are different in scope than those of applications
– separate mediators are easier to maintain

• Because mediators are stable and small, they can be mobile
– they can be shipped to sites where large volumes of data must be

processed

52

© 1999 Singh & Huhns 103

Type Brokers
A low-level means to manage structure and semantics of

information and query languages. Brokers
– define standard types by which computations can communicate
– distribute the type information— an application uses the broker to

find a service, and then communicates directly with the service
– give slightly more semantics than directories— the type signature

of methods, not just their names

With more sophisticated notions of service semantics, brokers
could be more useful

© 1999 Singh & Huhns 104

Creating Semantic Mappings

Cognition

Universe of
Discourse 1

Conceptual
Schema

CASE
Tool

Interface

Application

Database

use generate

Cognition Conceptual
Schema

CASE
Tool

Interface

Application

Database

use generate

Universe of
Discourse 2

MIST

53

© 1999 Singh & Huhns 105

Ontologies and Articulation Axioms

TransportationDevice

Train Vehicle Boat

Truck Automobile Jeep

DB1

id make
Car

DB2

no model
Auto

Application 1 Interface 1Common
Ontology

Articulation
Axiom 1

Articulation
Axiom 2

Articulation
Axiom 3

Articulation
Axiom 4

© 1999 Singh & Huhns 106

Topic Trees, Ontologies, and
Database Schemas

MiG29

People Terms

Mikoyan

ivan artem mikoyan

r73 mig29 sirena

Weapon

PersonNumber

Air Sea

Fighter Bomber

speed weight

price designer

expertIn

Person DOB Specialty Fighter Speed Weight Price

54

© 1999 Singh & Huhns 107

Semantic Translation

Application 1 Application n

Common
Enterprise-Wide

View

Semantic Translation
by Mappings

Semantic Translation
by Mappings

Semantic Translation
by Mappings

Semantic Translation
by Mappings

Semantic Translation
by Mappings

DB1

DB1

DB1

Agent for Application

Agent for Resource

User

Agent for Application

Agent for Resource

Agent for Resource

© 1999 Singh & Huhns 108

Logistics Information Management

LogisticsLogistics
Ontology Browser,Ontology Browser,
Query Editor, andQuery Editor, and

Database InspectorDatabase Inspector

MultiuserMultiuser

LogisticsLogistics
Information SpaceInformation Space

<--> Domain Space<--> Domain Space
TranslatorTranslator

SAASSAAS
DBDB

QueriesQueries InformationInformation

DataDataSQLSQL

LogisticsLogistics
Ontology 2Ontology 2

AMDFAMDF
DBDB

GLADGLAD
DBDB

.

LogisticsLogistics
Ontology nOntology n

LogisticsLogistics
Ontology 1Ontology 1

MultipleMultiple
DomainDomain

OntologiesOntologies

MultipleMultiple
InformationInformation
ResourcesResources

55

© 1999 Singh & Huhns 109

Database Abstractions for
Computation

© 1999 Singh & Huhns 110

Traditional Transactions
DB abstraction for activity
• ACID properties

– Atomicity: all or none
– Consistency: final state is consistent if initial state is consistent
– Isolation: intermediate states are invisible
– Durability: committed results are permanent

In distributed settings, use mutual (e.g., two-phase) commit to
prevent violation of ACID properties

x:=x-a y:=y+a

56

© 1999 Singh & Huhns 111

MDBS

3 levels of autonomy are possible
• design, e.g., LDB software is fixed
• execution, e.g., LDB retains full control on execution even if in

conflict with GTM
• communication, e.g., LDB decides what (control) information to

release

GTM

LDB LDB

server server

Global
Transactions

Local
Transactions

© 1999 Singh & Huhns 112

Global Serializability
Transactions throughout the MDBS are serializable, i.e., the

transactions are equivalent to some serial execution
• What the GTM can ensure is that the global transactions

are serializable
• This doesn't guarantee global serializability, because of

indirect conflicts:
– GTM does T1: r1(a); r1(c)
– GTM does T2: r2(b); r2(d)
– LDB1 does T3: w3(a); w3(b)
– LDB2 does T4: w4(c); w4(d)
– Since T1 and T2 are read-only, they are serializable.
– LDB1 sees S1=r1(a); c1; w3(a); w3(b); c3; r2(b); c2
– LDB2 sees S2=w4(c); r1(c); c1; r2(d); c2; w4(d); c4
– Each LDB has a serializable schedule; yet jointly they put T1

before and after T2

57

© 1999 Singh & Huhns 113

Global Atomicity

This arises because some sites may not release their
prepare-to-commit state and not participate in a
global commit protocol

© 1999 Singh & Huhns 114

Global Deadlock

Easy to construct scenarios in which a deadlock is
achieved. Assume LDB1 and LDB2 use 2PL. If a
deadlock is formed

• solely of global transactions, then the GTM may
detect it

• of a combination of local and global transactions,
then
– GTM won't know of it
– LDBs won't share control information

58

© 1999 Singh & Huhns 115

Tickets

Global serializability occurs because of local conflicts that the
GTM doesn't see

• Fix by always causing conflicts--whenever two GTs
execute at a site, they must conflict there. Indirect conflicts
become local conflicts visible to the LDB
– Make each GT increment a ticket at each site

• Downside:
– Causes all local subtransactions of a global transaction to go

through a local hotspot
– GTs are serialized but only because lots are aborted!

© 1999 Singh & Huhns 116

Rigorous DBMS

Rigorous = Strict.
• Check that this prevents the bad example.
• The GTM must delay all commits until all actions are

completed
– possible only if allowed by LDB
– requires an operation-level interface to LDB

• Downside:
– Causes all sites to be held up until all are ready to commit
– Essentially like the 2PC approach

59

© 1999 Singh & Huhns 117

Global Constraints

• When no global constraints, local serializability is
enough

• Can split data into local and global
– LDB controls local data
– GTM controls global (local read but only write via

GTM)

• Downside: doesn’t work in all cases

© 1999 Singh & Huhns 118

Atomicity & Durability

What happens when a GT fails?
• The local sites ensure atomicity and durability of

the local subtransactions
• With 2PC, GTM can guarantee that all or none

commit
Otherwise,

– redo: rerun the writes from log
– retry: rerun all of a subtransactions
– compensate: semantically undo all others

60

© 1999 Singh & Huhns 119

B2B Workflows

© 1999 Singh & Huhns 120

Workflows
• Tasks include queries, transactions, applications, and

administrative activities
• Tasks decompose into subtasks that are

– distributed and heterogeneous, but
– coordinated

• Subtasks have mutual constraints on
– order
– occurrence
– return values

61

© 1999 Singh & Huhns 121

Workflow Applications

• Loan application processing
• Processing admissions to graduate program
• Telecommunications service provisioning often

requires
– several weeks
– many operations (48 in all, 23 manual)
– coordination among many operation-support systems

and network elements (16 database systems)

© 1999 Singh & Huhns 122

Why Workflows?

• ACID transactions are applicable for
– brief, simple activities (few updates; seconds, at most)
– on centralized architectures

• By contrast, open environments require tasks that are
– Complex, i.e., long-running, failure-prone, update data across

systems with subtle consistency requirements
– Cooperative, i.e., involve several applications and humans
– Over heterogeneous environments
– Have autonomous unchangeable parts

62

© 1999 Singh & Huhns 123

Workflow Challenges
• Modeling a workflow

– Notion of correctness of executions
– Notion of resource constraints

• Interfacing a workflow interface with underlying
databases?
– Concurrency control
– Recovery

• Exception handling: normal executions are often
easy— just a partial order of activities

• Handling revisions

© 1999 Singh & Huhns 124

Extended Transactions
Numerous extended transaction models that relax the ACID

properties in set ways. They consider features such as
• Nesting

– traditional: closed (ACID)
– newer: open (non-ACID)

• Constraints among subtransactions, such as
– commit dependencies
– abort

• Atomicity, e.g., contingency procedures to ensure “all”
• Consistency restoration, e.g, compensation

63

© 1999 Singh & Huhns 125

Extended Transaction Models

• Sagas
• Poly transactions
• Flex transactions
• Cooperative transactions
• DOM transactions
• Split-and-join transactions
• ACTA metamodel
• Long-running activities
• ConTracts

© 1999 Singh & Huhns 126

Scheduling Approaches

Ensure how activities may be scheduled, assuming that
desired semantic properties are known

• Significant events of a task are the events that are relevant
for coordination. Thus a complex activity may be reduced
to a single state and termination of that activity to a
significant event

• Workflows can be modeled in terms of dependencies
among the significant events of their subtasks

Example: If the booking assignment transaction fails, then
initiate a compensate transaction for the billing transaction

64

© 1999 Singh & Huhns 127

B2B Process Interoperation

© 1999 Singh & Huhns 128

Organizational Treatment of
Interoperation

Spheres of Commitment
• Define abstract societies. Each role

– requires capabilities
– imposes commitments
– grants authorities

• Agents instantiate spheres of commitment
– autonomously or when configured by humans
– behave according to the commitments

65

© 1999 Singh & Huhns 129

Social Abstractions

• Commitments: social, joint, collective, ...
• Organizations and roles
• Teams and teamwork
• Mutual beliefs and problems
• Joint intentions
• Potential conflict with individual rationality

© 1999 Singh & Huhns 130

Coherence and Commitments

• Coherence is how well a system behaves as a unit.
It requires some form of organization, typically
hierarchical

• Commitments among the agents are a means to
achieve coherence

66

© 1999 Singh & Huhns 131

Kinds of Commitment

• Psychological or mental: an agent’s state of
being committed to a belief or an intention

• Joint: agents’ commitments to the same
intention or belief

• Mutual: agents’ commitments to one
another with respect to the same condition

© 1999 Singh & Huhns 132

Social Commitments

An agent’s commitment to another agent
• unidirectional
• arising within a well-defined scope or

context, which is itself a MAS
• revocable within limits

67

© 1999 Singh & Huhns 133

Organizations

Whenever agents work together in a shared
environment and with some structure to
their interactions. Typically,
– larger-scale than single agent
– engaged in tasks
– goal-oriented
– with knowledge and memory beyond individual

© 1999 Singh & Huhns 134

Motivation for Organizations

Organizations help overcome the limitations
of agents in various respects (recall
definition of an agent)
– reasoning
– capabilities
– perception
– lifetime and persistence
– shared context essential for communicating

68

© 1999 Singh & Huhns 135

Modeling Organizations

• Abstractly, organizations
– consist of roles

• requiring certain capabilities
• offering certain authorities

– involve commitments among the roles

• Concretely, organizations
– consist of agents
– acting coherently

© 1999 Singh & Huhns 136

Sphere of Commitment

SoCom: an organization that provides the
context or scope of commitments among
relevant agents
– the SoCom serves as a witness for the

commitment
– helps validate commitments and test for

compliance
– offers compensations to undo members’ actions

69

© 1999 Singh & Huhns

Example: Buying and Selling

• Define an abstract sphere of commitment
(SoCom) consisting of two roles: buyer and
seller, which require capabilities and
commitments about, e.g.,
– requests they will honor
– validity of price quotes

• To adopt these roles, agents must have the
capabilities and acquire the commitments.

Buyer and Seller Agents

SoComs provide the context for the concepts represented & communicated.

70

© 1999 Singh & Huhns

Example: Buying and Selling

• Agents can join
– during execution— requires publishing the

definition of the commerce SoCom
– when configured by humans

• The agents then behave according to the
commitments

• Toolkit should help define and execute
commitments, and detect conflicts.

Virtual Enterprises (VE)
Two sellers come together with a
new proxy agent called VE.

Example of VE agent
commitments:

• notify on change

• update orders

• guarantee the price

• guarantee delivery date

71

A Selling VE

© 1999 Singh & Huhns

Social Commitments

• Operations on commitments (instantiated as
social actions):
– create
– discharge (satisfy)
– cancel
– release (eliminate)
– delegate (change debtor)
– assign (change creditor).

72

© 1999 Singh & Huhns

Policies and Structure

• Spheres of commitment (SoComs)
– abstract specifications of societies
– made concrete prior to execution

• Policies apply on performing social actions
• Policies related to the nesting of SoComs
• Role conflicts can occur when agents play

multiple roles, e.g., because of nonunique
nesting.

© 1999 Singh & Huhns 144

Teams

Tightly knit organizations
• shared goals, i.e., goals that all team

members have
• commitments to help team-members
• commitments to adopt additional roles and

offer capabilities on behalf of a disabled
member

73

© 1999 Singh & Huhns 145

Teamwork

When a team carries out some complex
activity
– negotiating what to do
– monitoring actions jointly
– supporting each other
– repairing plans

© 1999 Singh & Huhns 146

Joint Intentions

Traditional accounts of teams are based on
joint intentions and mutual beliefs

• Team-members jointly intend the main goal
of the team, which means that they
– all intend it and mutually believe that they

intend it
– each will notify the others if it drops out and

mutually believe this notification requirement

74

© 1999 Singh & Huhns 147

Problems with Joint Intentions: 1

• Joint intentions appear useful, although
somewhat complicated. More importantly,
– Several agents mutually believe a proposition p

if and only if each believes p, each believes
that each believes p, and so on ad infinitum

– Thus mutual beliefs cannot be attained (unless
hardwired in) through asynchronous
communication with unreliable or unbounded
messages

© 1999 Singh & Huhns 148

Problems with Joint Intentions: 2

– The same construction can be made for joint
intentions

– In other words, such idealized teams cannot
exist

The intuitive problem is that this approach
tries to simulate social structure purely
through mental concepts.

75

© 1999 Singh & Huhns 149

Multiagent Workflow at NCSU

Workflows are composite, long-running activities
– exceptions
– revisions
– flexible negotiation

The NCSU approach involves
– roles with patterns of commitment as statecharts
– reflective use of capabilities

JESS + JATLite prototype implementation

© 1999 Singh & Huhns 150

Service Location and Evaluation

76

© 1999 Singh & Huhns 151

Retrieval versus Discovery
What or who?
• Information retrieval is concerned with

– obtaining information
– from a specific set of servers
– with a specific query
– correctness matters

• Resource discovery and location is concerned with
– finding where to get the information
– incompleteness might matter
– relevance matters

Retrieval is almost as difficult in closed environments as in
open ones. Discovery is not as difficult a problem in closed
environments

© 1999 Singh & Huhns 152

Network Navigation

Organize servers into a network so that you can
reach appropriate ones from each other (e.g.,
WWW)

Typically a matter of following pointers through a
friendly, but not very helpful, interface:

• No semantics or notion of relevance
• No support for query routing
• No support for making links

77

© 1999 Singh & Huhns 153

Resource Discovery Challenges

• Scalability (w.r.t. network and server loads)
– number of services
– complexity of service description
– number of users

• Efficient and effective indexing of
information sources
– high relevancy
– low volume, i.e., high precision

© 1999 Singh & Huhns 154

Harvest
Main architectural components:
• Provider, which runs a service (resource)
• Gatherer, which resides on the provider's site and monitors it for

indexing info; specialized for a topic
• Broker, which gives an indexed query interface to a number of

providers
• Replicator, which manages a wide-area file-system (with eventual

consistency)
• Service Registry, which knows about all gatherers and brokers
Brokers can be nested
Users can get to succinct indexes from which they can find the server sites

with the best fit for their query
No semantic support; topic-specific indexing can be demanding, but is

still a good solution

78

© 1999 Singh & Huhns 155

Content Routing
Associates a content label with each document or collection

(may be recursive). The label abstractly specifies the
contents of its document or collection

• Queries (and labels) are boolean combinations of attributes
• User begins a query at a server; a standard server exists for

novices
• The query is matched against labels to select good

collections; this is done repeatedly until a base collection
(one with documents) is found

No semantics to the labels

© 1999 Singh & Huhns 156

Applying Taxonomies
A network of specialized information agents (in

SIMS)
• Knowledge and queries are represented in a

taxonomic (concept) language (LOOM)
– selection of information sources
– reformulation of query and generation of query plans

• The representation support heuristics to
– generalize or specialize concepts
– partition concepts
– decompose relations

79

© 1999 Singh & Huhns 157

Recommender Systems Applied

Explosive growth: crucial for
• social interaction
• e-communities
• e-commerce: potentially a way to

– increase security by presenting a group’s views
– make it harder for a scam artist to repeatedly

exploit trusting people

© 1999 Singh & Huhns 158

Recommender Techniques

• Collaborative-filtering: find things liked by
people similar to you (e.g., Lira, Firefly)

• Matchmaker systems: cluster the agents
with similar interests (e.g., Yenta)

• Expertise location: find someone with the
needed expertise (e.g., ReferralWeb)

80

© 1999 Singh & Huhns 159

MINDS: Agent-Based Management
of Flat-File Documents

Documents

Surrogates

TCP/IP

Other
Nodes

File
System

Relational
Database
System

MINDS

User

Documents Surrogates

© 1999 Singh & Huhns 160

Key Features of MINDS
• Uses

– metaknowledge (about other agents and how information is used)
– knowledge about the contents and locations of documents-these are

acquired dynamically
– certainty factors that indicate the likelihood that one user will

supply relevant information to another to control query processing
• Maintains

– a system view at each node
– user models at each node

• Is self-initializing
• Processes queries best-first and in parallel
• Improves its performance over time

81

© 1999 Singh & Huhns 161

System Dynamics of MINDS
Query Engine

Learning Subsystem

RDBMS:
Documents and
Metaknowledge

x(k)
(command) y(k)

(retrieved
documents

and
surrogates)

h(k)

Output function: y(k) = q(x(k), h(k))
State function: h(k+1) = a(x(k), h(k))

© 1999 Singh & Huhns 162

Updating Metaknowledge in MINDS
Heuristic 1: IF a document is deleted,

THEN no metaknowledge is changed
Heuristic 2: IF a document is created by user1,

THEN metaknowledge of user1 about user1
regarding each keyword of the document is
increased to 1.0 (maximum relevance)

Heuristic 3: IF a retrieve predicated on keyword1
is issued by user1,
AND at least one user2 surrogate contains
keyword1,
THEN (a) user1 metaknowledge about user2
regarding keyword1 is increased (weight 0.1),
(b) user2 metaknowledge about user1 regarding
keyword1 is increased (weight 0.1)

82

© 1999 Singh & Huhns 163

Agent Amplified Expertise
Location

Each person is assigned a user agent, which
keeps the user’s expertise/interest profile:
– scans (all) private email and files
– indexes keywords and phrases
– creates a list of email contacts, indexed by context
– matches requests against the profile using information

retrieval techniques

© 1999 Singh & Huhns 164

Agent Amplified Process

• Hand query to user agent
• Agent computes set of relevant contacts
• Agent sends query to contacts’ agents
• If there is a good match, receiving agent

passes the request on to its owner
• Otherwise, receiving agent sends back

referrals (if any)

83

© 1999 Singh & Huhns 165

Advantages

• Largely passive on part of humans
– users are shielded from irrelevant messages
– messages are tagged by referral chain

• Messages are focused, not broadcast
– can access selected members of large

community

© 1999 Singh & Huhns 166

Information Access

Direct connection to online data: DBs, WWW
– Slow, frustrating
– Where to look?
– Much valuable information deliberately not online,

because of two reasons:
• Economic: Value of info is partly determined by how hard it is

to find
• Social: People may be reluctant to state sensitive information

publicly

84

© 1999 Singh & Huhns 167

Information Access

Person to person communication: email,
newsgroups

• Who to ask?
– individuals: spamming not welcomed
– mailing lists: popularity decrease effectiveness
– newsgroups: no idea of who is listening

© 1999 Singh & Huhns 168

Referral Systems

85

© 1999 Singh & Huhns 169

Why Referral Systems?

• Most recommender systems hide the
identity of the sources of the
recommendations
– E-communities: fictitious identities
– Matchmaker systems: deliberately hide true

identities
– Collaborative filtering: aggregate results— no

one to trust (or blame)

© 1999 Singh & Huhns 170

Why Referral Systems?

Result: anonymous opinions
• People can more easily trust opinions of

those whom they personally know
– Useful for simple decisions, such as buying a

CD or watching a movie
– Essential for serious decisions

86

© 1999 Singh & Huhns 171

Trusted Recommendations

• For serious decisions, you want the opinion
of a trusted expert

• If an expert is not personally known, then
you want a reference to an expert via a
chain of friends and colleagues

© 1999 Singh & Huhns 172

Referrals

• Referral chains provide:
– Way to judge quality of expert's advice
– Reason for the expert to respond in a

trustworthy manner

• Finding good referral-chains is
– slow and time-consuming
– but vital

87

© 1999 Singh & Huhns 173

Social Network

Set of all possible referral chains in which an
individual may participate

• As the chains get longer,
– the trustability of a recommendation decreases
– the effort to find experts increases

• Therefore, shorter chains are better

© 1999 Singh & Huhns 174

Small World Phenomenon

Milgram (1967): almost any two individuals in
the U.S.A. are linked by a chain of 6 or fewer
first-name acquaintances (empirical
observation)

– Six degrees of separation
– Erdös numbers

88

© 1999 Singh & Huhns 175

Social Networks via Referrals

Typically people are directly aware of only a
small part of their social network

• Referrals can help discover the wider social
network or even expand it

• Referrals help create a larger community,
exposing connections to more people who
would otherwise be hidden over the horizon.

© 1999 Singh & Huhns 176

MARS: A Multiagent Referral
System

A system for creating and managing social
networks in
– a company
– an e-community
– the WWW

• Simulation results described; usable
prototype under construction

89

© 1999 Singh & Huhns 177

MARS Features

• Integrates IR techniques with adaptive user
modeling to refine the social network

• Allows allows agents to unintrusively
exchange explicit profile information to add
coverage regarding a user’s expertise.

© 1999 Singh & Huhns 178

Experimental Setup

• Each agent has
– some interests
– some expertise
– a set of neighbors, each with interests and

expertise, which are modeled by the given
agent

90

© 1999 Singh & Huhns 179

Queries

• Queries are generated by users and
forwarded by their agents

• In the simulation, an agent’s queries are
generated based on his interest

© 1999 Singh & Huhns 180

Responses

• Responses are of two kinds
– answers based on the responder’s expertise
– referrals to other agents known to the responder

• Responses are produced by either
– a user
– an agent, who tries to handle as many as queries

as possible to minimize interruptions for the
user.

91

© 1999 Singh & Huhns 181

Querying and Responding

© 1999 Singh & Huhns 182

Example Referral Graph

92

© 1999 Singh & Huhns 183

Quality after Increasing Interactions

© 1999 Singh & Huhns 184

Referrals at Different Sociability

93

© 1999 Singh & Huhns 185

Improvement of Quality for a New
Member

© 1999 Singh & Huhns 186

Small-World Network

A highly structured (clustered) network with
just a few random edges

• Yields high clustering and short paths
• Random edges correspond to shortcuts

– direct relationships between people who
primarily participate in different sub-
communities

– shortcuts: weak-ties

94

© 1999 Singh & Huhns 187

Weak-ties in a Social Network

Acquaintances who form shortcuts to other
communities
– offer direct relationships between people who

primarily participate in different sub-
communities

– improve the effectiveness of referrals by
bringing in knowledge of other communities.

© 1999 Singh & Huhns 188

Pivots and Weak-ties

• Pivots are people with high connectivity
who are important to the network

• The best weak ties are to pivots, who then
link one up with lots of other communities.

95

© 1999 Singh & Huhns 189

Pivots in Social Networks

© 1999 Singh & Huhns 190

Improvement Due to a Pivot

96

© 1999 Singh & Huhns 191

Catalysis at Different Caches

© 1999 Singh & Huhns 192

Weak-ties versus Clustering

• Conventional approaches give
recommendations based on the preferences
of similar users (form clusters)

• For finding referrals, it is best to ask
dissimilar people who bring a novel
perspective
– define a form of controlled scattering

97

© 1999 Singh & Huhns 193

Catalysis at Different Caches

© 1999 Singh & Huhns 194

Future Work
Usable prototype (in progress)
• Scale-up to handle more users
• Learning

– user profiles and helpfulness
– user needs

• Trust and Reputation
– trust and authority
– reliability

98

© 1999 Singh & Huhns 195

General Agent and MAS
Technologies

© 1999 Singh & Huhns 196

Control

99

© 1999 Singh & Huhns 197

Importance of Control

How to maintain global coherence without explicit
global control? Important aspects include how to

• determine shared goals
• determine common tasks
• avoid unnecessary conflicts
• pool knowledge and evidence

© 1999 Singh & Huhns 198

Task Decomposition
Divide-and-conquer to reduce complexity: smaller

subtasks require less capable agents and fewer
resources

• Task decomposition must consider the resources
and capabilities of the agents, and potential
conflicts among tasks and agents
– The designer decides what operators to decompose over

– The system decides among alternative
decompositions, if available

100

© 1999 Singh & Huhns 199

Task Decomposition Methods

• Inherent (free!): the representation of the problem contains
its decomposition, as in an AND-OR graph

• System designer (human does it): decomposition is
programmed during implementation. (There are few
principles for automatically decomposing tasks)

• Hierarchical planning (agents do it): decomposition again
depends heavily on task and operator representation

© 1999 Singh & Huhns 200

Task Decomposition Examples
• Spatial decomposition by information source or decision point:

• Functional decomposition by expertise:

Pediatrician

Internist

Psychologist

Neurologist

Cardiologist

Agent 1

Agent 2

Agent 3

101

© 1999 Singh & Huhns 201

Task Distribution Criteria

• Avoid overloading critical resources
• Assign tasks to agents with matching capabilities
• Make an agent with a wide view assign tasks to other

agents
• Assign overlapping responsibilities to agents to achieve

coherence
• Assign highly interdependent tasks to agents in spatial or

semantic proximity. This minimizes communication and
synchronization costs

• Reassign tasks if necessary for completing urgent tasks

© 1999 Singh & Huhns 202

Task Distribution Mechanisms

• Market mechanisms: tasks are matched to agents by
generalized agreement or mutual selection (analogous to
pricing commodities)

• Contract net: announce, bid, and award cycles
• Multiagent planning: planning agents have the

responsibility for task assignment
• Organizational structure: agents have fixed responsibilities

for particular tasks
• Recursive allocation: responsible agent may further

decompose task and allocate the resultant subtasks

102

© 1999 Singh & Huhns 203

The Contract Net Protocol
An important generic protocol
• A manager announces the existence of tasks via a (possibly selective)

multicast

• Agents evaluate the announcement. Some of these agents submit bids

• The manager awards a contract to the most appropriate agent

• The manager and contractor communicate privately as necessary

© 1999 Singh & Huhns 204

Task Announcement Message

• Eligibility specification: criteria that a node must
meet to be eligible to submit a bid

• Task abstraction: a brief description of the task to
be executed

• Bid specification: a description of the expected
format of the bid

• Expiration time: a statement of the time interval
during which the task announcement is valid

103

© 1999 Singh & Huhns 205

Bid and Award Messages

• A bid consists of a node abstraction— a brief
specification of the agent’s capabilities that are
relevant to the task

• An award consists of a task specification— the
complete specification of the task

© 1999 Singh & Huhns 206

Applicability of Contract Net

The Contract Net is
• a high-level communication protocol
• a way of distributing tasks
• a means of self-organization for a group of agents

Best used when
• the application has a well-defined hierarchy of tasks
• the problem has a coarse-grained decomposition
• the subtasks minimally interact with each other, but cooperate when

they do

104

© 1999 Singh & Huhns 207

Interaction and Communication

© 1999 Singh & Huhns 208

Communication
• The primary reason for communication among

agents is to coordinate activities
• Agents may coordinate without communication

provided they have models of the others’ behavior
• Communication involves the dimensions of who,

what, when, how (resources and protocol), why
• To cooperate, agents often need to communicate

their intentions, goals, results, and state

105

© 1999 Singh & Huhns 209

Communication Versus
Computation

• Communication is generally more expensive and less
reliable:
– Recomputing is often faster than requesting remote information
– Communication can lead to prolonged reasoning and negotiation

• Communication is qualitatively superior:
– Information cannot always be reconstructed locally
– Communication can be avoided only when the agents are set up to

• share all necessary knowledge
• make observations directly from their shared environment

© 1999 Singh & Huhns 210

Interaction and Communication

• Interactions occur when agents exist and act in close
proximity:
– resource contention, e.g., bumping into each other

• Communications are the interactions that preserve
autonomy of all participants, but maybe realized through
physical actions that don’t

• Communications can be realized in several ways, e.g.,
– through shared memory
– because of shared conventions
– by messaging passing

106

© 1999 Singh & Huhns 211

MAS Communication Protocols
• A MAS protocol is specified by the following:

– sender
– receiver(s)
– language in the protocol
– actions to be taken by the participants at various stages

• A MAS protocol is defined above the transport layer
– not about bit patterns
– not about retransmissions or routing

• A MAS protocol is defined at the knowledge level
– involves high-level concepts, such as

• commitments, beliefs, intentions
• permissions, requests

© 1999 Singh & Huhns 212

A Classification of Message
Classifications

• Syntactic
– distinguish messages based on grammatical forms in natural

language

• Semantic
– distinguish messages based on a notion of intrinsic meaning

prohibitive is different from directive, despite syntactic similarity

• Use-based
– distinguish messages based on their roles in specific classes of

protocols
assertion is different from acknowledgment

107

© 1999 Singh & Huhns 213

Speech Act Theory
• Speech act theory, developed for natural language, views

communication as action.
• It considers three aspects of a message:

– Locution, or how it is phrased, e.g., "It is hot here" or "Turn on the
cooler"

– Illocution, or how it is meant by the sender or understood by the
receiver, e.g., a request to turn on the cooler or an assertion about the
temperature

– Perlocution, or how it influences the recipient, e.g., turns on the
cooler, opens the window, ignores the speaker

Illocution is the core aspect.

© 1999 Singh & Huhns 214

Speech Act Theory and MAS
• Classifications of illocutions motivate message types in

MAS, but are typically designed for natural language
– rely on NL syntax, e.g., they conflate directives and prohibitives

• Most research in speech act theory is about determining the
agents’ beliefs and intentions, e.g., how locutions map to
illocutions.

• In MAS,
– determining the message type is trivial , because it is explicitly

encoded
– determining the agents’ beliefs and intentions is impossible,

because the internal details of the agents are not known.

108

© 1999 Singh & Huhns 215

Informing

How can one agent tell another agent something?
• Send the information in a message (message passing)
• Write the information in a location where the other agent is

likely to look (shared memory)
• Show or demonstrate to the other agent (teaching)
• Insert or program the information directly into the other

agent (master --> slave; controller --> controllee; "brain
surgery")

© 1999 Singh & Huhns 216

Querying

How can one agent get information from another agent?
• Ask the other agent a question (message passing)
• Read a location where the other agent is likely to write

something (shared memory)
• Observe the other agent (learning)
• Access the information directly from the other agent

("brain surgery")

109

© 1999 Singh & Huhns 217

Syntax, Semantics, Pragmatics

For message passing
• Syntax: requires a common language to represent

information and queries, or languages that are
intertranslatable

• Semantics: requires a structured vocabulary and a shared
framework of knowledge-a shared ontology

• Pragmatics:
– knowing whom to communicate with and how to find them
– knowing how to initiate and maintain an exchange
– knowing the effect of the communication on the recipient

© 1999 Singh & Huhns 218

KQML: Knowledge Query and
Manipulation Language

KQML KQML

Agent Agent Application
Program

110

© 1999 Singh & Huhns 219

KQML Protocols

Client Server

Client Server

Client Server

Query

Reply

Query
Handle

Next
Next

Reply
Reply

Reply
Reply
Reply

Subscribe

Synchronous: a blocking query waits for an expected reply

Asynchronous: a nonblocking subscribe results in replies

Server maintains state; replies sent individually when requested

© 1999 Singh & Huhns 220

KQML Is a Layered Language

Content of
Communication

Message:
Logic of Communication

Communication:
Mechanics of Communication

111

© 1999 Singh & Huhns 221

Communication Assumptions

• Agents are connected by unidirectional links that
carry discrete messages

• Links have nonzero transport delay
• Agent knows link of received message
• Agent controls link for sending
• Messages to a single destination arrive in the order

they were sent
• Message delivery is reliable

© 1999 Singh & Huhns 222

KQML Semantics

• Each agent manages a virtual knowledge base (VKB)
• Statements in a VKB can be classified into beliefs and

goals
• Beliefs encode information an agent has about itself and its

environment
• Goals encode states of an agent’s environment that it will

act to achieve
• Agents use KQML to communicate about the contents of

their own and others’ VKBs

112

© 1999 Singh & Huhns 223

Reserved Performative Types
1. Query performatives:
• evaluate, ask-if, ask-one, ask-all
2. Multiresponse performatives:
• stream-in, stream-all
3. Response performatives:
• reply, sorry
4. Generic informational performatives:
• tell, achieve, cancel, untell, unachieve
5. Generator performatives:
• standby, ready, next, rest, discard
6. Capability-definition performatives:
• advertise, subscribe, monitor, import, export
7. Networking performatives:
• register, unregister, forward, broadcast, route, recommend

© 1999 Singh & Huhns 224

Informatives
tell
:content <expression>
:language <word>
:ontology <word>
:in-reply-to <expression>
:force <word>
:sender <word>
:receiver <word>

deny
:content <performative>
:language KQML
:ontology <word>
:in-reply-to <expression>
:sender <word>
:receiver <word>

untell
:content <expression>
:language <word>
:ontology <word>
:in-reply-to <expression>
:force <word>
:sender <word>
:receiver <word>

113

© 1999 Singh & Huhns 225

Database Informatives
insert
:content <expression>
:language <word>
:ontology <word>
:reply-with <expression>
:in-reply-to <expression>
:force <word>
:sender <word>
:receiver <word>

delete
:content <performative>
:language KQML
:ontology <word>
:reply-with <expression>
:in-reply-to <expression>
:sender <word>
:receiver <word>

© 1999 Singh & Huhns 226

Query Performatives
evaluate
:content <expression>
:language <word>
:ontology <word>
:reply-with <expression>
:sender <word>
:receiver <word>

reply
:content <expression>
:language KQML
:ontology <word>
:in-reply-to <expression>
:force <word>
:sender <word>
:receiver <word>

ask-one
:content <expression>
:aspect <expression>
:language <word>
:ontology <word>
:reply-with <expression>
:sender <word>
:receiver <word>

114

© 1999 Singh & Huhns 227

Common Ontologies
• A shared representation is essential to successful

communication and coordination
– For humans: physical, biological, and social world
– For computational agents: common ontology (terms

used in communication)

• Current efforts are
– Cyc
– DARPA ontology sharing project
– Ontology Base (ISI)
– WordNet (Princeton)

© 1999 Singh & Huhns 228

Legal Abstractions

115

© 1999 Singh & Huhns 229

Legal Abstractions

• Contracts
• Directed obligations
• Hohfeldian concepts
• Compliance

© 1999 Singh & Huhns 230

Legal Concepts

• Because law involves the interactions of
citizens with one another and with the
government, the legal abstractions have
been rich in multiagent concepts

• Traditional formalisms for legal reasoning,
however, are often single-agent in
orientation, e.g., deontic logic

116

© 1999 Singh & Huhns 231

Contracts

• Much of the law is about the creation and
manipulation of contracts among legal
entities
– people
– corporations
– governmental agencies

The law is the study of how to break
contracts!

© 1999 Singh & Huhns 232

Motivation

The legal abstractions provide a basis for
agents to enter into contracts, e.g., service
agreement, with each other

• Contracts
– are about behavior
– important in open environments

117

© 1999 Singh & Huhns 233

Directed Obligations

• Contracts lead naturally to one party being
obliged to another party
– more precise notion of obligation than in

traditional deontic logic
– two-party concept has a more multiagent flavor

© 1999 Singh & Huhns 234

Rights

The rights or claims a party has, as opposed to
the right (ethical) thing to do

• The claims of one party are the duties of
another: claim is a correlate of duty

118

© 1999 Singh & Huhns 235

Hohfeldian Concepts: 1

Hohfeld discovered that “right” is used
ambiguously and proposed a uniform
terminology to distinguish the various
situations. Sixteen concepts result:
– Four main concepts
– Their correlates
– Their negations
– Their negations’ correlates

© 1999 Singh & Huhns 236

Hohfeldian Concepts: 2

• Claim-duty: as above
• Privilege-exposure: freedom from the

claims of another agent
• Power-liability: when an agent can change

the claim-duty relationship of another agent
• Immunity-disability: freedom from the

power of another agent

119

© 1999 Singh & Huhns 237

Compliance

• The legal concepts are meaningful only if
satisfaction with them can be verified or
falsified.

© 1999 Singh & Huhns 238

Social Commitments

Social commitments in our approach are a
legal abstraction, because they subsume
directed obligations as well as the
Hohfeldian concepts. Importantly, they are

• public
• can be used as the basis for compliance

(discussed under protocols)

120

© 1999 Singh & Huhns 239

Metacommitments

Agents often wish to, or must, violate their
commitments. Metacommitments
– constrain the manipulation of commitments
– may involve a higher authority, the context, to

adjudicate
– can be used to specify acceptable behavior

© 1999 Singh & Huhns 240

Protocols and Compliance

121

© 1999 Singh & Huhns 241

Commitment Protocols

• Interaction protocols can be viewed in two
main lights:
– coordination: ordering and occurrence of

actions by the agents, e.g., FSM, Petri Nets,
temporal logic (TL)

– commitment: the creation and modification of
the agents’ commitments to one another, also
formalized using TL

© 1999 Singh & Huhns 242

Compliance with Protocols

In open multiagent systems, agents are
contributed by different vendors and serve
different interests

• How can we check if the agents comply
with the specified protocols?
– Coordination aspects: traditional techniques
– Commitment aspects: representations of the

agents’ commitments in TL

122

© 1999 Singh & Huhns 243

Verifying Compliance With
Commitment Protocols

• Specification
– models based on potential causality
– commitments based on branching-time TL

• Run-time Verification
– respects design autonomy
– uses TL model-checking
– local verification based on observed messages

© 1999 Singh & Huhns 244

Example: Fish-market: 1

Execution

123

© 1999 Singh & Huhns 245

Example: Fish-market: 2

Local Models

© 1999 Singh & Huhns 246

Specification of Commitment
Protocols

• Main roles and SoCom
– metacommitments
– protocol tokens and their meaning in terms of

commitments

• Domain-specific propositions and actions
• Skeletons of roles essential for coordination

124

© 1999 Singh & Huhns 247

Message Patterns for Operations
on Commitment

Message patterns on commitment operations ensure that the
information flows to the right parties, so decisions can be
made locally.

© 1999 Singh & Huhns 248

Run-time Compliance Checking

• An agent can keep track of
– its pending commitments
– commitments made by others that are not

satisfied
• It uses this local model to see if a

commitment has been violated
• An agent who benefits from a commitment

can always determine if it was violated

125

© 1999 Singh & Huhns 249

Economic Abstractions

© 1999 Singh & Huhns 250

Motivation

The economic abstractions have a lot of
appeal as an existing approach to capture
complex systems of autonomous agents

• By themselves they are incomplete
• Can provide a basis for achieving some of

the contractual behaviors, especially in
– helping an agent decide what to do
– helping agents negotiate

126

© 1999 Singh & Huhns 251

Market-oriented Programming

• An approach to distributed computation
based on market price mechanisms

• Effective for coordinating the activities of
many agents with minimal communication

• Goal: build computational economies to
solve problems of distributed resource
allocation

© 1999 Singh & Huhns 252

Benefits

• The state of the world is described completely by current
prices

• Agents do not need to consider the preferences or abilities
of others

• Communications are offers to exchange goods at various
prices

• Under certain conditions, a simultaneous equilibrium of
supply and demand across all of the goods is guaranteed to
exist, to be reachable via distributed bidding, and to be
Pareto optimal

127

© 1999 Singh & Huhns 253

Market Behavior

• Agents interact by offering to buy or sell
quantities of commodities at fixed unit
prices

• At equilibrium, the market has computed
the allocation of resources and dictates the
activities and consumptions of the agents

© 1999 Singh & Huhns 254

Agent Behavior

• Consumer agents: exchange goods
• Producer agents: transform some goods into

other goods
• Assume individual impact on market is

negligible
• Both types of agents bid so as to maximize

profits (or utility)

128

© 1999 Singh & Huhns 255

Negotiation

Negotiation is central to adaptive, cooperative
behavior

• Negotiation involves a small set of agents
• Actions are propose, counterpropose, support,

accept, reject, dismiss, retract
• Negotiation requires a common language and

common framework (an abstraction of the
problem and its solution)

© 1999 Singh & Huhns 256

Negotiation

• A deal is a joint plan between two agents that would
satisfy their goals

• The utility of a deal for an agent is the amount he is willing
to pay minus the cost to him of the deal

• The negotiation set is the set of all deals that have a
positive utility for every agent. The possible situations for
interaction are
– conflict: the negotiation set is empty
– compromise: agents prefer to be alone, but will agree to a

negotiated deal
– cooperative: all deals in the negotiation set are preferred by both

agents over achieving their goals alone

129

© 1999 Singh & Huhns 257

Negotiation Mechanism

The agents follow a Unified Negotiation Protocol, which
applies to any situation. In this protocol,

• the agents negotiate on mixed-joint plans, i.e., plans that
bring the world to a new state that is better for both agents

• if there is a conflict, they “flip a coin” to decide which
agent gets to satisfy his goal

© 1999 Singh & Huhns 258

Negotiation Mechanism
Attributes

• Efficiency
• Stability
• Simplicity
• Distribution
• Symmetry
e.g., sharing book purchases, with cost

decided by coin flip

130

© 1999 Singh & Huhns 259

Third-party Negotiation
• Resolves conflicts among antagonistic agents directly or

through a mediator
• Handles multiagent, multiple-issue, multiple-encounter

interactions using case-based reasoning and multiattribute
utility theory

• Agents exchange messages that contain
– the proposed compromise
– persuasive arguments
– agreement (or not) with the compromise or argument
– requests for additional information
– reasons for disagreement
– utilities / preferences for the disagreed-upon issues

[Sycara]

© 1999 Singh & Huhns 260

Negotiation in RAD

• Resolves conflicts among agents during problem solving
• To negotiate, agents exchange

– justifications, which are maintained by a DTMS
– class information, which is maintained by a frame system

• Maintains global consistency, but only where necessary for
problem solving

131

© 1999 Singh & Huhns 261

Negotiation Among
Utility-based Agents

Problem: How to design the rules of an
environment so that agents interact
productively and fairly, e.g.,

• Vickrey’s Mechanism: lowest bidder wins,
but gets paid second lowest bid (this
motivates telling the truth?? and is best for
the consumer??)

© 1999 Singh & Huhns 262

Problem Domain Hierarchy

Worth-Oriented Domains

State-Oriented Domains

Task-Oriented Domains

132

© 1999 Singh & Huhns 263

Task-Oriented Domains

• A TOD is a tuple <T, A, c>, where T is the
set of tasks, A is the set of agents, and c(X)
is a monotonic function for the cost of
executing the set of tasks X

• Examples
– delivery domain: c(X) is length of minimal path that visits X

– postmen domain: c(X) is length of minimal path plus return

– database queries: c(X) is minimal number of needed DB ops

© 1999 Singh & Huhns 264

TODs

• A deal is a redistribution of tasks
• Utility of deal d for agent k is

Uk (d) = c(Tk) - c(dk)
• The conflict deal, D, is no deal
• A deal d is individual rational if d>D
• Deal d dominates d’ if d is better for at least one agent and

not worse for the rest
• Deal d is Pareto optimal if there is no d’>d
• The set of all deals that are individual rational and Pareto

optimal is the negotiation set, NS

133

© 1999 Singh & Huhns 265

Monotonic Concession Protocol

• Each agent proposes a deal
• If one agent matches or exceeds what the other demands,

the negotiation ends
• Else, the agents propose the same or more (concede)
• If no agent concedes, the negotiation ends with the conflict

deal
This protocol is simple, symmetric, distributed, and
guaranteed to end in a finite number of steps in any TOD.
What strategy should an agent adopt?

© 1999 Singh & Huhns 266

Zeuthen Strategy

Offer deal that is best among all deals in NS
• Calculate risks of self and opponent

R1=(utility A1 loses by accepting A2’s offer)
 (utility A1 loses by causing a conflict)

• If risk is smaller than opponent, offer minimal sufficient
concession (a sufficient concession makes opponent’s risk
less than yours); else offer original deal

• If both use this strategy, they will agree on deal that
maximizes the product of their utilities (Pareto optimal)

• The strategy is not stable (when both should concede on last step, but it’s
sufficient for only one to concede, then one can benefit by dropping strategy)

134

© 1999 Singh & Huhns 267

Deception-Free Protocols

• Zeuthen strategy requires
full knowledge of
– tasks
– protocol
– strategies
– commitments

• Hidden tasks
• Phantom tasks
• Decoy tasks

P.O. A1 (hidden)

A1 A2

© 1999 Singh & Huhns 268

Problem

• How to achieve coordination in a
decentralized multiagent system?

• What does coordination result from?
– Main concepts
– Trade-offs

135

© 1999 Singh & Huhns 269

 Underlying Tools And
Infrastructure

© 1999 Singh & Huhns 270

Distributed Object Infrastructure

136

© 1999 Singh & Huhns 271

CORBA

• Persistence
• Externalization and Streams
• Naming and Trading
• Events
• Transactions

© 1999 Singh & Huhns 272

Persistent Object Service
• The POS

– standardizes how an object's persistent state is stored and retrieved
via operations such as store, checkpoint, and restore (aka revert)

– provides a persistence service with an IDL interface
– is superfluous if an OODB is available

• Variations the POS must handle
– whether control of the storage is automatic or by the client
– whether control is over individual objects or sets (or graphs) of

them
– what underlying systems are available
– what is the granularity of the underlying operations

137

© 1999 Singh & Huhns 273

Naming Services

Essence:
• bind names to objects (their references)
• find objects given their names
Key issues:
• Representing names
• Making NSs federate, i.e., share names so that

objects in different domains can be found-key to
interoperability

© 1999 Singh & Huhns 274

Names
• Lots of naming conventions exist, e.g., Unix and DOS
• OMG defines a name as a sequence of name components,

each component being an identifier and a type field
– the last component binds to an object reference
– all preceding components define successive naming contexts
– main operations: bind, resolve, unbind

• It is claimed this can map to any naming convention
– (IMHO, should work for any (tree-based) hierarchical naming

scheme)

138

© 1999 Singh & Huhns 275

Trader

• Name service = white pages
• Trader = yellow pages + mail-order catalog

– YP to discover objects that meet some criteria
– Mail-order to dynamically invoke operations

• Services are given by domain-specific properties:
• what
• how
• how much

Traders can federate with other traders

© 1999 Singh & Huhns 276

Event Service
Generalizes of techniques for maintaining referential integrity
• One way to maintain constraints is to notify other objects

of changes in a given object
• ES separates notification from object’s program logic

139

© 1999 Singh & Huhns 277

ORB Communication

ORB communications are of 3 kinds:
• synchronous: sender blocks until receiver responds
• asynchronous: (one-way) sender doesn't wait for receiver
• deferred synchronous: sender proceeds independently of

the receiver, but only up to a point
Execution is best effort, at most once
• With idempotent operations, more than once would be OK,

but with nonidempotent operations it wouldn't

© 1999 Singh & Huhns 278

ES Architecture

• Event channels decouple communication
• Each event from a supplier is sent to every

consumer
• Amount of storage for notifications is a QoS issue,

left to implementers

Supplier

Supplier

Event Channel

Consumer

Consumer

140

© 1999 Singh & Huhns 279

Transaction Services
OTS supports OnLine Transaction Processing
• ACID transactions: flat or nested
• Wrapping existing systems
• Interoperability of various shades, e.g.,

– single transaction over ORB and nonORB apps
– access to nonobject programs and resources
– access to objects from existing programs
– coordination over the above

• Network interoperability: >=1 OTS over >=1 ORB (4 cases)
• Flexible transaction control:

– client determines if op is part of transaction
– client can invoke trans and nontrans objects
– objects can specify transaction behavior of interfaces

• TP monitors:
– concurrency and recovery across processes

© 1999 Singh & Huhns 280

Distributed Component Object Model
(DCOM)

 COM is an ORB; it provides an object standard and a
common method of inter-ORB communication using OLE.
DCOM distributes this across platforms

Client
Application

In-Process
Object

Local
Object

Remote
Object

Client Process

Local
Object

Local
Object

Stub

Stub

Local Server

Remote Server (DCOM)

RPC

LRPC

141

© 1999 Singh & Huhns 281

Microsoft Middleware Approach

Windows
Client

Microsoft Message
Queuing / Microsoft
Transaction Server

SQL
Server

The
EnterpriseCOM

Transaction
Integrator

Distributed COM (transport layer)

© 1999 Singh & Huhns 282

Sun Middleware Approach

Web
Browser

JavaBeans

Enterprise JavaBeans
Server

Java
Database

Connectivity

Oracle

Remote Method Invocation/Internet Inter-ORB Protocol
(transport layer)

Sybase

IBM

142

© 1999 Singh & Huhns 283

Jini Architecture
• Extends Java from one machine to a network of machines
• Uses Remote Method Invocation (RMI) to move code around a

network
• Provides mechanisms for devices, services, and users to join and

detach from a network

Infrastructure Programming Model Services

Java Java VM
RMI
Security

Java APIs
JavaBeans

JNDI
Enterprise Beans
JTS

Java + Jini Discovery/Join
Lookup
Distributed Security

Leasing
Transactions
Events

Printing
Transaction manager
JavaSpaces

© 1999 Singh & Huhns 284

Jini Services and Protocols

Service Provider

(printer)

Lookup Service

Client

(digital camera)

Service object &
attributes

Service object &
attributes

Service object &
attributes

1. discovery

2. join

3. look up

4. invoke

143

© 1999 Singh & Huhns 285

Jini As an Agent Infrastructure

• + Jini provides two-phase commit for transactions
• + Clients have leases on services for specific

durations
• + Lookup services can be arranged hierarchically
• – Lookup service requires exact match on name of

Java class (or its subclass)
• – Agents (clients & servers) interact procedurally

© 1999 Singh & Huhns 286

Mobile Agents

144

© 1999 Singh & Huhns 287

Mobile Agents
A computation that can change its location of

execution (given a suitable underlying execution
environment), both
– code
– program state

• Motivations:
– Efficiency: move the code instead of the data
– Upgradability: dynamically adding functionality at a

remote server by sending it an agent
– Survivability

© 1999 Singh & Huhns 288

Mobile Agent Applications
• Remote data processing
• Disconnected operation, especially for PDAs
• Testing distributed network hardware (a multihop

application)

145

© 1999 Singh & Huhns 289

Mobile Agent Toolkit from IBM

• Aglets are mobile Java agents that can roam the
Internet. They are developed using the Aglets
Workbench

• Aglets are in use in Japan
http://www.tabican.ne.jp/index.html will help you
to find a package tour or flight that matches your
requirements

© 1999 Singh & Huhns 290

Mobile Agent Technology at Mitsubishi

• Concordia - a framework for development and
management of network-efficient mobile agent
applications for accessing information anytime, anywhere,
and on any device supporting Java. With Concordia,
applications:
– Process data at the data source
– Process data even if the user is disconnected from the network
– Access and deliver information across multiple networks (LANs,

Intranets and Internet), using wire-line or wireless communication
– Support multiple client devices, such as Desktop Computers,

PDAs, Notebook Computers, and Smart Phones

146

© 1999 Singh & Huhns 291

Mobile Agent Frameworks

• Odyssey from General Magic (Java-based)
• ARA "Agents for Remote Action" from University of

Kaiserslautern (Tcl, C++, Java)
• MOA "Mobile Objects and Agents" from The OpenGroup

– uses OS process migration technology
• Concordia from Mitsubishi Electric IT Center (Java-based)
• Aglets from IBM (Java-based)
• TKQML from UMBC (Tcl and KQML)
Most allow agents to be started, stopped, moved, and

monitored

© 1999 Singh & Huhns 292

Telescript

Now defunct, but interesting nevertheless
Telescript is
• object-oriented
• persistent
• interpreted
• with special primitives for communication

The telescript environment consists of
• places organized into regions with homogeneous control
• agents can travel over places
• agents must prove their credentials before entering a new region

147

© 1999 Singh & Huhns 293

Telescript

• Agents move from one Place to another Place to
perform their assigned tasks

• Agents and Places are processes
• Agents and Places can request operations and data

from each other
• Places are grouped into Clouds, each of which has

a local directory (Finder database)

© 1999 Singh & Huhns 294

Challenges for Mobile Agents

Programming languages are needed that
• can express useful remote computations
• are understood at remote sites and are portable

(standards)
• do not violate security of the sender or receiver
• are extensible
Understand the semantics of the different

information resources being accessed

148

© 1999 Singh & Huhns 295

Challenges for Mobile Agents
Techniques to manage distributed computations that
• disseminate extensions to the programming language

interpreter
• authenticate senders
• improve interfaces so that advanced users are not penalized

while older systems are supported
• prevent deadlock
• prevent livelock
• control lifetimes
• prevent flooding of communication or storage resources

© 1999 Singh & Huhns 296

Analysis
Anything that can be done with mobile agents can be done

with conventional software technology
• Mobility raises concerns of security
• Much safer to move just the code than the program state

– No fancier than dynamic installation of functionality
– Better to have declarative interfaces than procedural interfaces

• Mobile agents are still waiting for a killer application

149

© 1999 Singh & Huhns 297

Agent Tools And Projects

© 1999 Singh & Huhns 298

Agent Toolkit at IBM

• ABE "Agent Building Environment" from IBM
– written in C++ and Java, agents have rule-based

reasoning and interfaces to the web (http), news groups
(nntp), and email (smtp)

150

© 1999 Singh & Huhns 299

Agent Toolkit at IBM

• JKQML from IBM: a framework and API for
constructing Java-based, KQML-speaking
software agents that communicate over the
Internet. JKQML includes
– KTP (KQML transfer protocol): a socket-based transport protocol

for a KQML message represented in ASCII.
– ATP (agent transfer protocol): a protocol for KQML messages

transferred by a mobile agent that is implemented by Aglets.
– OTP (object transfer protocol): a transfer protocol for Java objects

that are contained in a KQML message

© 1999 Singh & Huhns 300

Agent Toolkit at Stanford

• The "Java Agent Template" JATLite
– enables simple Java agents to communicate over a LAN

via KQML
– provides an agent nameserver
– provides a message router that implements a store-and-

forward capability (useful for disconnected agents)
– enables communication via TCP/IP or email

151

© 1999 Singh & Huhns 301

Agent Toolkit at CMU

• RETSINA: an architecture for multiple
agents that team up on demand to access,
filter, and integrate information in support
of user tasks

© 1999 Singh & Huhns 302

Agent Toolkit from Sandia

• JESS "Java Expert System Shell"
– (CLIPS in Java) enables solitary, rule-based reasoning

agents to be constructed
– agents can reason about Java objects

152

© 1999 Singh & Huhns 303

Tools from Reticular Systems

• AgentBuilder is an integrated tool suite for constructing
intelligent software agents. It consists of two major
components
– The AgentBuilder Toolkit includes tools for managing the agent-

based software development process, analyzing the domain of
agent operations, designing and developing networks of
communicating agents, defining behaviors of individual agents,
and debugging and testing agent software

– The Run-Time System includes an agent engine that provides an
environment for execution of agent software. Agents constructed
using AgentBuilder communicate using KQML

© 1999 Singh & Huhns 304

Agent Toolkit from ObjectSpace

• AgentSpace is a Java-based framework for mobile agent
systems developed on top of the ObjectSpace Voyager
system. It provides
– a Java multithreaded server process in which agents can be

executed
– a set of Java client applets that support the management and

monitoring of agents and related resources
– a package of Java interfaces and classes that defines the rules to

build agents

153

© 1999 Singh & Huhns 305

Agents and Tools from
AgentSoft Inc.

• AgentSoft's Web macros can be used to
automate Internet and intranet jobs

• For example, LiveAgent Pro makes it easy
to create scripts that gather information
from all over the Web

© 1999 Singh & Huhns 306

Agent Projects at MIT

• Amalthea - ecosystem of evolving information-filtering and discovery
agents that cooperate and compete in markets

• Butterfly - an agent that samples 1000s of groups and recommends
ones of interest

• Expert Finder - agents who help find experts that can assist people
with problems

• Friend of a Friend Finder - a network of agents that enables using
social networks to get answers to personal questions

• Kasbah - a multiagent system that helps people transact goods
• Letizia - a user interface agent that helps a user browse the web by

learning the user’s interests and scouting ahead
• Mobile Agents for Routing Discovery - mobile agents that map

dynamic network topologies

154

© 1999 Singh & Huhns 307

Agent Projects at MIT

• PDA@Shop - mobile agents on handheld computers for point-of-sale
comparison shopping

• Remembrance Agents - proactive just-in-time memory aids that use a
person’s current environment to recommend information

• Straum - representing a person’s Internet presence by creating an
ecology of distributed agents

• Tete-a-Tete - agent-mediated integrative negotiation techniques for
online merchants to differentiate their wares

• Trafficopter - a decentralized self-organizing network of agents to
collect and communicate traffic information

• Yenta - an agent-based system that finds clusters of people with
common interests

© 1999 Singh & Huhns 308

Other Agent Projects
• CWRU Autonomous Agents Research Group
• UMASS Distributed Artificial Intelligence Laboratory
• UNH Cooperative Distributed Problem Solving Research Group
• USC Soar Project
• Agent Projects at HCRL (Chicago)
• Stanford Nobotics Group
• Michigan Distributed Intelligent Agent Group - agents for digital

libraries
• Intelligent Web Agents / Houston (IWAH) (Research Institute for

Computing and Information Systems - University of Houston)
• Intelligent Autonomous Software Agents for Virtual Environments and

other areas of telematics at the Austrian Research Institute for
Artificial Intelligence

155

© 1999 Singh & Huhns 309

Other Agent Projects

• MAS Research at Vrije Universiteit Brussels (VUB)
• Distributed Artificial Intelligence at the Dept of Information

Engineering of PARMA University
• Knowledgeable Community Project (Nishida Lab.)
• DAI Research Unit at QMW Electronic Engineering Department

specializes in building real-world multiagent systems
• Multi-Agent Systems Research Group at Université de Laval
• CALVIN : Communicating Agents Living Vicariously In Networks -

KSL (NRC - CNR)
• The Multi-Agent Systems Group of the University of Maastricht
• DAI at Geneva University Hospital
• HUJI DAI group

© 1999 Singh & Huhns 310

Conclusions

156

© 1999 Singh & Huhns 311

Research Trends in Agents

• Social and organizational behavior
• Multiagent learning
• Formal Methods
• Negotiation
• Interaction-Oriented Programming

© 1999 Singh & Huhns 312

Research Trends in EC

• Virtual enterprises
• Supply chain management
• Auction theory
• Mechanism design
• Personalization

157

© 1999 Singh & Huhns 313

Recurring Challenges

• Design rules for systems with autonomous,
heterogeneous components

• Security and trust concerns in open
environments

• Scalability
• User interfaces

© 1999 Singh & Huhns 314

Elements of Trust

Ultimately, what we would like is to trust our
agents. Trust involves
– having the right capabilities
– following legal contracts where specified
– supporting one’s organization or society
– being ethical
– failing all else, being rational

158

© 1999 Singh & Huhns 315

Lessons: 1
• Advanced abstractions can help a lot in multiagent

systems by helping
– understand how MAS will be used
– specify MAS in high-level terms
– design MAS in a principled manner
– validate MAS with respect to user needs

• But the abstractions must
– be conceptually simple and well-grounded in theory
– reflect true status of the system, not just a nice-

sounding buzzword

© 1999 Singh & Huhns 316

Lessons: 2
• Most real-world problems are mundane

– integrate advanced technology into existing systems
– user interfaces and database systems deserve much

attention
– adaptive approaches are better, because the

specification is usually not available at the outset

• Don’t mess with autonomy and heterogeneity
• Do it locally
• Be problem-driven, not solution-driven

159

© 1999 Singh & Huhns 317

To Probe Further
• Readings in Agents (Huhns & Singh, eds.), Morgan

Kaufmann, 1998
http://www.mkp.com/books_catalog/1-55860-495-2.asp

• IEEE Internet Computing, http://computer.org/internet
• DAI-List-Request@ece.sc.edu
• International Conference on Multiagent Systems (ICMAS)
• International Joint Conference on Artificial Intelligence
• ACM Conference on Electronic Commerce (EC)
• International Workshop on Agent Theories, Architectures,

and Languages (ATAL)

